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Introduction

That’s one small step for a man, one giant leap for mankind.

— Neil Armstrong, first human being on the Moon

0.1 About this document

0.2 Kerbal Space Program

Kerbal Space Program [1] is a rocket simulation game; it lets you build, launch
and pilot a rocket to put up satellites, send probes, land rovers, and have Kerbals
do SCIENCE.

A big advantage a KSP player has over actual rocket crafters is that she can
have rockets exploding without having to worry about consequences. Half the
fun of the game comes from finding out why your next rocket will fail; thus, I
urge you roll rockets to the launchpad early and not bother thinking of every
little thing that could go wrong.

Airsick will not cover the initiation to the game, since the interface is spe-
cific to the game and prone to change. The game offers an intuitive way to
assemble rockets and has a handy interface to control the flight. Rather, it will
expose, explain and detail real principles of physics that the game mimics. This
information can be read simply for curiosity, or can serve to design more precise
launches in the game. When possible, example values will be taken from reality
or KSP.

? KSP is a propietary software. You can play the demo for free, but will be
limited to an older version with only a few parts available for building. The
demo is way harder and the complete game way richer.

e This document is intended to provide information both for beginners and
actual physicists. The first few chapters are an introduction to the elemen-


https://en.wikipedia.org/wiki/Neil_Armstrong
https://en.wikipedia.org/wiki/Satellite
https://en.wikipedia.org/wiki/Space_probe
https://en.wikipedia.org/wiki/Rover_%28space_exploration%29

HOW WELL T UNDERSTAND
ORBITAL MECHANICS:

TME—>

Figure 1: Mouseover text reads ”To be fair, my job at NASA was working on robots
and didn’t actually involve any orbital mechanics. The small positive slope over that
period is because it turns out that if you hang around at NASA, you get in a lot of
conversations about space.” [15]
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tary concepts used within this book. In every chapters accurate derivations
and complete proofs are developed wherevever needed. If you are not inter-
ested in the specifics of a demonstration or have already some knowledge
of basics physics, feel free to skip irrelevant parts.

0.3 Credits

This document makes extensive use of pictures, diagrams and various illus-
trations. Most figures were generated with the file from ETEXusing the Tikz
package. When an external image was included as a figure, a reference to the
source is linked in the caption (e.g. [15]).

Sources for the other illustrations:

e front cover [2]
e chapter banners [3]
e back cover [1]
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Chapter 1

Basics

Imagination will often carry us to worlds that never were. But without it
we go nowhere.

— Carl Sagan, popular atrophysicist

1.1 Units

1.1.1 Dimensions

A number can be used to count items or measure different concepts. For in-
stance,  might be refering to a duration, an angle, a mass, a pressure, a distance,
a speed, an acceleration, a force, etc. The concept z is referring to is called the
dimension of x.

There is usually several ways to measure a similar concept. For instance,
a distance might be measured in either meters, feet, stadiums, etc. To avoid
confusion, we agreed on which units should be prefered; those are called SI Units
(for Systéme International, which is French for International System).

Below is a summary of some dimensions, the corresponding SI unit, and
other common units:

Dimension  SI unit Other units

angle radian (rad) turn (-), degree (°)

duration second (s) hour (h), day (d), year (y)
distance meter (m) foot (ft), mile (mi), light-year (ly)
speed meter per second (m/s) mile per hour (mph), knot (kn)
mass kilogram (kg) ton (t), pound (Ib)

pressure pascal (Pa) atmosphere (atm), bar (bar)



https://en.wikipedia.org/wiki/Carl_Sagan

e A light year is the distance that a particle of light can travel in a year. For
comparison, it takes light a little bit more than eight minutes (8 min) to
get from the Sun to the Earth, meaning that the Sun is 8 light-minutes
away from the Earth. Kerbin is about 45 light-seconds away from Kerbol.

1.1.2 Prefixes

When considering different scales, it is practical to use different units. Using a
same unit when traveling or when describing a stamp would force us to use tiny
and huge numbers, making it harder to build an intuition.

Such units have been hinted above. For instance, the angstrom is used for
the size of atoms and molecules; the parsec is used for interstellar distances.
Creating a new unit for each use case is cumberstone and makes it harder to
concialiate intersecting situations.

A simpler approach is to use prefixes. The idea is to easily create new units
out of a basic one. That way, a kilometer is 1,000 meters and we can simply
write 355 km rather than 355,000 m.

Here are the most common prefixes:

kilo- (k-) mega- (M-) giga- (G-) tera- (T-)
10 106 10° 10'2

e There are also prefixes to decrease the value of an unit:

milli- (m-) micro- (u-) nano- (n-) pico- (p-)

1073 1076 107°° 10712

1.1.3 Conversion

We sometimes need to switch the unit used for a measure. For example, let us
convert 50 km/h to ST units. We know that km = 1000 m and h = 3600 s so:

50 km/h = 50(1000 m)/(3600 s) = 50 x 1000/3600 m/s =14 m/s

This particular example shows how easy it is to include units in computa-
tions. As we will see below, having the units is useful when considering more
complex expressions.

1.1.4 Addition (and substraction)

An addition involves two measures of the same dimension. For example, let us
assume we have a distance x defined as follows:

10 CHAPTER 1. BASICS



r=21ly+4,730 Tm

Since we know that that [y = 9,4607 T'm, we can replace it in the expression:

x=2ly+4,730 Tm
=2(9,461 Tm) + 4,730 Tm
= (18,922 +4,730)Tm
= 23,652 Tm

Conversely, we could also have said that T'm = 1/9,461 [y and then:

r=2l1ly+4,730 Tm
=2 ly+ (4,730/9,461)ly
=(2+0.5)ly
=251y

Of course, the two ways are equivalent and we can check that 2.5 [y =
23,652 T'm.

1.1.5 Multiplication (and division)

We can create new units pretty easily. For example, if some object travels a
distance d = 15 m in a duration ¢t = 3 s, we can define the velocity v = d/t =
15 m/3 s = 5 m/s. Conversely, assume the object has traveled at a velocity
50 km/h for a duration 30 s; then, the distance it has gone through is:

d=vxt= (50 km/h)x (30 s) =14 m/sx 30 s = (14 x30)(m/s x 5) =417 m

By doing the operations on both the numerical values and the units, we know
what our result is: in this case, it’s a distance, and it is expressed in meters.

1.2 Functions

Let us consider a car (' moving along a straight road at a speed of v (e.g.
50 km/h). The position of the car, C', can be determined by the distance from
(' to an arbitrary fix point O (the origin). We will note this distance = and we
have thus z = OC.

We will measure time ¢ as the delay since the car was at the origin (C' = O).

0] C

X

Figure 1.1: (' is moving towards the right at speed v
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Say we want to follow the evolution of the position of the car as time passes
by. In other words, we are interested in knowing z as a function of t. We know
that, at time t, we have z = v x t. We write it:

z(ty=vxt

This notation gives us a general formula to compute x for any given value
of . For example, if we want to know the position of the car after one hour:

(1 h) =50 km/h x 1 h =50 km

As another example, it is known that the intensity of the light emitted by
a star decreases proportionnaly to the square of the distance to the star. This
can be written as:

|Q

L(r)=

=
[N~}

where C' is some constant value (i.e. independent from r) which is to be
determined experimentally.

1.3 Derivatives

1.3.1 Definition

Assume we know the position z(t) of the car for any instant ¢ and we want to
determine the velocity of the car at a given instant ;.

Figure 1.2: The horizontal axis represents the passage of time, the vertical axis the
position. The curve shows the position at every instant. For instance, at instant %o,
the position is z(to), which corresponds to the point A.

12 CHAPTER 1. BASICS



The velocity is the variation of position through time. Thus, to know how
fast the car is going at time ¢y, we need to look at the position of the car at
two different instants. We already have ¢(; let us also consider ¢, + h for some
arbitrary value h.

The difference in position between instants ¢y and ¢y + h is thus z(to + h) —
x(to); a shorter notation for this is Az(tp). The value h is not shown because
it has no importance in itself. The Greek letter A ("delta", equivalent of d), is
generally used to denote a difference (here, the difference in position).

Notice that, the bigger h, the bigger we expect this difference to be: the
longer the delay, the longer the car moved. To compensate for this, we will
divide by how much time has passed, which is to say h =ty + h — tg = Aty:

Az(to)
Aty

This value is the mean velocity from instant ¢y to instant ¢y + h. However,
the mean velocity is a value that only gives a general idea of the speed on some
period of time. In this duration, the instant velocity (actual speed) can vary
a lot and the mean velocity would then be far off to these values.

o+ h) g - B
8 1
2(ty) frmmmmmm e L
. L

t to to+ h

Figure 1.3: We add a point 5 to the previous graph at time ¢y + h. The mean
velocity from A to B can be thought as the slope of the blue line (AB).

Since we expect the speed to not change a lot on short periods of time, a
natural solution is to consider the mean velocity over shorter durations.

13



B
B

A A

] B

Figure 1.4: The closer to A we pick 3, the best the blue line matches the curve at
A.

So, as we pick shorter and shorter durations h, the value Aty becomes
smaller, but so does Az. Often, we will notice that the mean velocity seems to
converge (becomes closer and closer) to a particular value. Instead of contin-
uing to choose smaller and smaller values of /, we will pick this values and call
it the limit of %ti“) as h tends to 0 (becomes smaller and smaller). Or, for
short:

Ax(t
lim —T( 0)
h—0 AIL/()
Such a limit is called the derivative of x at t;. We have a shorter way to
note this:

dx (fg)
dt
Here, the derivative of = at ¢, corresponds to the mean velocity over an
infinitely small period, that is, the instant velocity.
Finally, we can do this for any value of ty. Thus, we have a new function
that let us evaluate the velocity at any tg:

, dw

T

?

e When the derivation is done with respect to time (i.e. =), we can simply
use the dot notation: 7.

14 CHAPTER 1. BASICS



v

Figure 1.5: This graph features both position and velocity. Since they do not
represent the same type of measurement, they each use a different axis and comparing
the relative positions of their curves is meaningless. However, we can see that, as the
position stabilizes in the middle, the velocity decreases; in the end the object moves
again, faster and faster.

1.3.2 Second derivative

The velocity is the derivative of the position. As a function, it can itself fluctuate
and we can be interested in these variations. The derivative of the velocity is
the acceleration: a = v.

A shorter way of saying that the acceleration is the derivative of the deriva-
tive of the position, is to say that the acceleration is the second derivative of the
position: a = .

1.3.3 Formal derivation

We now have a way to compute the derivative of a function at a given point.

However, it is not accurate: while we do get a better approximation by taking a

smaller value for h, the result is still an approximation and can sometimes stay
far off.

Instead, we can look at the expressions to determine the exact value for the

limit. For instance, let us consider the function f(z) = 122 and let us search

df(=z)

d

for the derivative of f at some z, i.e. =7—~. First:

Af(z)  fle+h)—f(x) 12(x+h)—120 12K _ 19
Az (x+h)—z h K

15



Af(z)

We now look at the value =t~ as Az gets small; in this case, it happens to
always be 12, and does not depend on Axz. Thus, however small Az, the value
is 12, and:

df(z) .. Af(z)

=1 =12
dz hlg%) Az

That way, we know the exact value of derivative of f in any point. Let us
take a second example with g(x) = 7z

Ag(z)  T(x+h)? =72 T(x® +2zh+h?) —Ta* Tk + hZ

Az h h B etk

Here, the expression does depend on h. However, the smaller h gets, the
less influence it has on the sum: the value is becoming closer and closer to 7z.
Thus: d‘é—(j) =Tz.

1.3.4 Derivation rules

Now, what if we want to compute the derivative of h(x) = 122 +722? Of course,
we could go through the same step as in the previous part. However keeping
the same definitions of f and g, we can notice that h = f + g. It means that
h(z) = f(x) + g(z) for all 2’s.

It turns out that it can be shown that -L(f +¢) = L f+ dg for any
functions f and g. Using this rule and knowing the derivative of f and g, we
can derive:

d
dx
There are a few derivation rules that can help us determine the derivative
of complex functions easily.

M) = (7 +9)(w) = 2o f(@) + 2ogla) = 124 T

(f)  =af (") = nan?
(f+9) =f+4d ()’ o
(fxg) =fxg+gxf , 1
’ (Inz)" =-
i _ fla—d'f T
g N g2 (COS J:)/ = —sinx
(f(g(ff))/ = g/(:c) X f/(g(x)) (sin .7;)/ = CcosT

(a) derivation rules (b) common derivatives
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1.4 Integrals

1.4.1 Definition

Now, let us consider the reverse situation: we know the velocity of the car v
at any given instant and we would like to know where it was at an arbitrary
instant ¢o. In other words, we know the derivative of the position & = v and we
intend to get the position = back.

The first thing to notice is that the velocity only informs us on relative mo-
tion: two cars can have the same velocity through time while being in different
positions. In the example below, the positions of two cars with the same speed
are shown; since the red car starts ahead, it stays ahead.

t

Figure 1.7: The red car moves like the blue car does, but starts ahead.

This means that we will need additional information to know where to start.
Here, we will assume the car start at (0 s) = 0 m.

As a first approximation, we could pretend the velocity is constant, and
always equal to v(tp). That would make the position trivial to compute: (tg) ~

U(fo) X 1.
Now, given a constant velocity vg and a delay ¢y, we know how to compute
the distance = as ©(y = vg X ty. In this situation however, the velocity changes

over the time interval from 0 s to tg.

17



Figure 1.8: The graph clearly shows that the velocity may not be close to v(to)
(horizontal dotted line): this is a very rough first approximation.

?

s Note that vy X {( is also the area of a rectangle of height vy and width ¢.
This maps to the green area on the graph.

For a better approximation, we will simply split this in several parts of width
h.

For instance, we can assume that, from time ¢ = 0 s to time ¢ = h, velocity
is constant and equal to v(h). Then, the distance traveled on this duration is
simply v(h) x h; then, from h to 2h, the car further travel v(2h) x h. Thus,
from time ¢ = 0 s to time ¢ = 2h, the car traveled roughly v(h) x h+ v(2h) X h.

When we consider more steps, we will want to avoid writing the whole sum.
Instead, we can use the ¥-notation ("sigma", Greek equivalent of s) to denote a
sum:

n

Zv(ih) x h =v(lh) x h

i=1
+v(2h) x h
+v(3h) x h
+ ...
+v(nh) x h

In other words, .7 ; v(ih) X h means "sum the expression v(i/) x h where
1 takes each of the integer values from 1 to n".

Here, we will want to have h X n = ¢y so that we can retrieve the distance
traveled from time ¢ = 0 s to time ¢ = tg.

18 CHAPTER 1. BASICS



t t

Figure 1.9: By assuming the velocity is constant on smaller and smaller time interval,
our aproximation becomes more precise.

?

s Notice that the value we are looking for is the sum of the surface areas of
the green rectangles. It turns out that this tends to match the value of the
surface area under the curve.

As for derivation, when / tends to zero, our rough approximation will become
more precise. Since we stil want A X n = t; we will instead make n grow instead,
and set h to %:

- <.to> to
Sufi) <l
— n n
As n tends to infinity (grows larger and larger), we expect the sum to con-

verge (come closer and closer) to some fixed value. Again, there is a short
notation for this:

)t = 1 zn: o) o
o= lim S o () x 2

s i=1

An ever shorter notation when there is no ambiguity is simply:

to
/ ’
0s

19



e Notations with dz and d¢ make it easy to reason with derivatives and
integrals. Since v is the derivative of u:

to

e 2 dg
/tl v= %df:;dz:x(tg)—x(tl)

1

This highlights the fact that integrals are just summing up all the vari-
ations between two points (here, from ¢t = ¢; to ¢t = t5). In particular, to
know the exact value of #(¢2), we need to know the initial value x(t1).

There is also a shorter notation for the difference of a value between
two points:

w(tz) — a(tr) = [2];}

1.4.2 Illustration

For example, if v(t) =t x 2 m/s?, then:

30 s
(30 s) — (0 s) = / t x 2 m/s*tdt
0

= (/030 2tdt> m/s?

= [0 *m/s”

= (900 s* — 0 s?)m/s*
=900 m

In particular, with we are given the additional information that (' did start
at O, ie. z(0) =0, then:

2(30 s) =900 m

This means that an object starting at rest getting a constant push of 2 m/s?
will travel 900 1 in 30 s.

1.4.3 Antiderivative

More generally, in the previous example, we could write:

30 s
x(t) — 2(0) = / 2 m/s* x tdt = t>m/s?
0

Another way to write it is:

z(t) =t*m/s* + C

20 CHAPTER 1. BASICS



where C' = 2(0) is a value independent of ¢ which depends on the initial
conditions (e.g. the position of the car at the initial instant). Each of the
possible expression of x (depending on C') is a primitive of &.

1.4.4 Geometric integrals

There should be more explanations here, but these formulas shows how we
compute the areas and volumes of common shapes.
Circle circumference:
d= 55 ds
c

2m
= / Rdé
0

= R[9];"
=2mR

Disk area:

4:// dA
D
R 2
= / / dr x rdf
r=0J0=0
R
= 27‘(’/ rdr
0

Sphere area:

A= # dA

) y,
™ 2

= / / (Rsin ¢d0)(Rdo)
6=0 J =0

= 2w R? / sin pdo
0

=27 R% [~ cos ¢,

= 4w R?

21



Sphere enclosed volume:

V= ///B v
_ / i /0 :} /¢ i(rsin¢d9)(rd¢)dr

R g
= 277/ / sin ¢pdr2dr
r=0J60=0
R

=27 [%r‘g] ) [—cos ¢];

4
= §7TR3

1.5 Differential equations

1.5.1 Definition

A differential equation is an equation whose unknown is a function and involving
a derivative of this function. For example:

df

i

This is a differential equation and we already know how to solve it (find

the expression of f). Here, f(z) = 23 + C for any constant value C' (there are
several possible solutions).

322

1.5.2 Exponential

The exponential function is defined as f(x) = e® where e is a mathematical
constant whose value is about 2.718. It was picked so that:

47 _

dxf

In other words:

?

o If we define f(z) = e9*) instead, derivation rules gives us:

UE) _ (ot
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so that % =df.

1.5.3 First order

Now, consider the following equation:
df
=7

We already know that f(x) = e” is a solution; however, so is f(z) = 2e*.
Actually, the set of solutions to this equation is the functions f(x) = Ce® where
C is any constant value.
The remark we made before tell us how to solve a differential equation of
the form:
df
=L
dz /
where h is also a function. We just need to find g such that ¢’ = h, i.e. the
solutions are:

f(.%‘) _ Cef(f h(z)dz

23
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Chapter 2

Mechanics

Every body continues in its state of rest, or of uniform motion in a right
line, unless it is compelled to change that state by forces impressed upon it.

— Isaac Newton, discoverer of the laws of motion and gravitation

Mechanics is the study of movement. In this chapter, we will describe how
physicists study the movement of physical objects using mathematical laws.
With this knowledge, we will then see how this is relevant to rocket science.

2.1 Referential

2.1.1 Origin

The first thing we want to do is to find a way to describe where objects are.
For this, we will elect an object (an actual physical object or just an arbitrary
virtual point in space) to be fixed, and consider all movements relative to this
origin.

2.1.2 Dimensions

If all the objects are on a same line (for instance a race track), then we can
describe the position of each object with a single measure: the distance from the
origin. Since a single measure is sufficient, a line is said to have one dimension.

If all the objects are on a same surface (for instance, on a checkboard), then
we need two numbers to fully describe the position of any of these objects. For
example, we may arrange items on a grid a tell their positions as the row and
column numbers; we can locate a location on the surface of the Earth using
longitude and latitude. Since two measures are needed, a surface is said to have
two dimensions.


https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Newton's_laws_of_motion
https://en.wikipedia.org/wiki/Newton's_law_of_universal_gravitation

e There are many ways to choose how to describe the position of an object.
For instance, rather than using the row and column number, we could use
the distance from the center and the angle formed with a fixed line. When
we say "there are two dimensions', the "two dimensions" do not refer to any
particular measures, but to the necessity of two different ones. There are
many choices of two measures to describe two dimensions.

Finally, we can consider an arbitrary location in space, which needs three
dimensions. For example, if we add altitude to longitude and latitude, we can
easily locate any object.

A referential is the object we use as a landmark (origin) to keep track of
interesting points. A system of coordinates if the kind of data you use to store
the position of these points relatively to the origin.

The most common set of measures used in two dimensions are the Cartesian
coordinate and the polar coordinate systems. The Cartesian coordinate
system extend to three dimensions naturally; there are two ways to extend the
polar coordinates system to a third dimension: the cylindrical coordinate
and the spherical coordinate systems.

2.1.3 Cartesian coordinates

Cartesian coordinates are the most common. We basically choose two (or three,
in space) directions, and the measures describes how much you have to go each
way to get from the origin to the point.

P

0] 1

Figure 2.1: P is at coordinates (1,2) in this referential: to go from origin O to O,
we have to go along direction & for 1 unit, and along direction % for 2 units

The directions used in Cartesian coordinates (the axes) are usually perpen-
dicular and conventionally named z and y, (and z)).

Derivatives

A nice property of the Cartesian coordinate system is that, if we are interested
in the variation of some point /> with Cartesian coordinates (z, y), we can simply
consider the vector (x, y).

26 CHAPTER 2. MECHANICS



s While a point denotes an offset from the origin, a vector denotes an offset
from an unspecified point.

2.1.4 Polar coordinates

Polar coordinates work in two dimensions. One value is simply the distance to
the origin while a second is the angle of /” with a fixed porientation.

I)

0)

Figure 2.2: The polar coordinates of P are (r,0)

Derivative

Consider a point P given in polar coordinates (0, 7). We can use the correspond-
ing Cartesian coordinates: 7 = (r cos(0),rsin(6)). Then we can derive on each
Cartesian coordinate using the derivation rules for function composition.

If we define # == (cos 0, sinf) and § = (—sin 0, cos 0)), then:

dif = (—0sind,fcos ) = 60
dg_ (= cost, —Osin b)) = —0r

Now, I° is at an offset 7" to the origin, where:
7= (rcos(d),rsin(h)) = ri
thus:

P = d(~f>—fd~+“df—v*f+“éé
AN A T T !

By deriving again, we get the acceleration:
oodys I, P
=3 (rr + r@ﬂ) = (i —r0°)F + (270 + r6)6

2.1.5 Spherical coordinates

Spherical coordinates are simply the generalization of polar coordinates to three
dimensions. To the usual coordinates » and #, we add a third one, ¢, which is
the angle with the polar plane:

27



o N

X

Figure 2.3: The spherical coordinates of I are (r,0,¢)

2.2 Newtonian mechanics

2.2.1 Center of mass

For the sake of simplicity, we will pretend that objects are simple points (e.g.
P) associated to their mass (e.g. m); such points (e.g. (P,m)) are called mass-
points. For a given object, the point we will use is called the center of mass
(CoM). It is easy to find for regular and uniform objects (e.g. a sphere).

We will usually refer to the position /” by using the vector 7= OF. The
velocity is simply the derivative of the position: ¢ = ; the acceleration is the
derivative of the velocity: a = 7 = 7.

2.2.2 Newton’s second law

Consider a mass-point (/°,m) subjected to forces F L /j‘-_;, .... We need not con-
sider every force independentely and can sum them as the resultant force
F=%F,.

Then, according to Newton’s second law:

1.
i=—F

This equation means several things. First, it means that an object on which
is exerted a non-zero resultant force will be accelerated (acceleration encom-
passes the slowing down of an object). Second, the more mass it has, the less it
will accelerate; since this is perceived as a resistance to movement, we call this
inertia.
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7 When / = 0, the acceleration is null as well. Thus, the speed is constant;

[ ]
this is Newton’s first law (chapter quote).

2.2.3 Gravitation

The gravitational force is one of the four fundamental forces that physicist have
identified, along with the electromagnetic, weak and strong forces.

Gravitation says that any two objects with a mass attract each other, at
any distance. Since it is extremely feeble, we do not observe it within common
objects. It becomes perceptible when huge masses are grouped together; for
instance, we observe an apple falling because of the vast mass of the Earth
effecting the apple.

The amount of force exerted by an object of mass ) over an object of mass
m is:

Mm

=g 2

where 7 is the distance between the two objects.

e The object of mass m attracts the object of A/ with the exact same mount
of force. The reason the Earth does not seem to move towards a falling
apple is because of inertia (see Newton’s second law).

2.3 Shell theorem
2.3.1 Problem

We are interested in knowing the gravitation exerted by a celestial body C' (i.e.
the gravity). We will assume the celestial body is a ball of radius R and uniform
density p and consider a mass-point (1m, P) at distance r from ("
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2.3.2 Elementary force

The usual way to solve a large problem is to split it in smaller problems and solve
those instead. Here, to find the total force exerted, we will split the spherical
body in many mass points (), dm).

The force exerted by () over P is oriented along Q?D and has magnitude:

mdm

F = dgm = QW
Another way to write this is:
. d
Gy =645
S

where s is just PQ

2.3.3 Symmetry

Now, to simplify things, we can notice the axial symmetry of the whole situation
around (CP). This means that the resultant force g can only be along the axis
(CP): no other could be justified without breaking the symmetry.

Thus, we can only choose to only consider the effect of () along (C'P); the
others effect will cancel out. The effect of gravitation from () exerted on P
along (CP) is:

. P(
dg - % :gﬂ X Ccos 1

52
where v is the angle CPQ.

2.3.4 Integrating

Now, it is only a matter of integrating. We first extend the elementary volume
dV in spherical coordinates as (psinidf)(pdi). Then we just need to do a
substitution and to cancel out terms.
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g= ///dq?c

ﬂ g'u cos

= gu/p /w /0 cos ¢ x (dp)(psinpdd)(pdy))

=27Gu / / cos ¢ sinydipdp
p=p— JPp=0

= 27Tgﬂ/ 24/ R2 — r2sin? 1 cos ¥ sin Ydipdp (2.1)
h=0

2 — 2
= 47Tgu/ Bﬁgm ~u du (2.2)
= T r 2 F u?
= 47Tgu / u?du
0
=g —7TR3 X i
R r2
~———
=V

2.3.5 Result
In the end, g = % It means that, the resultant gravitation force exerted by

a planet is the same as the mass-point in the center with the same mass, even
when close to it.

This will make all considerations involving the gravitation of a planet rela-
tively easy, as long as we assume it is spherical and uniform.

2.3.6 Details on the substitution

To get from (2.1) to (2.2), we substitute u = \/ k2 — r2sin 1 for 7). This means

that ¢y = arcsin —”2;“2 and subsequently:
qu 1 o —2udu U q
P = = — U
‘ 1 2wl 2rv R?2 — u? V2 — R2 + u2/R? — 12
—=

We then use the relations sin(arcsinz) = x and cos(arcsinx) = v/1 — 22 for
0<z<Z
ST>3
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2.4 Sphere of influence

2.4.1 Patched conics

In reality, an object travelling through space is influenced by all moons, planets
and stars of the universe. Even when restricting to the closest moon, closest
planet and closest star, the combined influence of several bodies is hard to take
into account simultaneously.

A simple approximation is to only consider the body with the most influence.
The region where a celestial body has the most influence is called the sphere
of influence. When leaving the sphere of influence of one body, we transition
to that of another. The trajectory is then made of two parts (two conics), hence
the name patched conics approximation.

2.4.2 Influences

We will consider two mass-points (7, A1) and (%, M) and look at their influ-
ences on a mass-point (7,m) between them.
The intensity of forces F| and /' respectively exerted by P, and P, are:

Mim . Mom
P, P2 ST 7 PRP?

For short, we define r = P, P and R = P, P,. Thus, P, P = P \P,— PP = R—
r. We also define p; = GM; and py = G, (the gravitational parameters).
The accelerations due to each are:

Fi=g

g = HLoond g = _ M2
) 2 (R—r)?

The acceleration exerted by /7, over F,, and by P, over P are respectively:

1
g1,2 = n and go 1 =

2
R2 R2

2.4.3 Perturbations

Now, if we look at the acceleration of P relatively to P, it is perturbed by
the fact that /7, does not exert the same acceleration over I” and over /7;. The
absolute perturbation is go — ¢2.1 (the difference in acceleration from /%).

In practice, this value only makes sense when compared to the main accel-
eration g;. Here, we will assume that » < R; it makes sense when /| is an
object significantly smaller than .. We define the relative perturbation @ as:

12 — K2 2
0, = 92 =921 _ ®R=-r)®2 _ RZ _ T H2 (1 _ 1)
= = 21 - 2 r\2
g1 3 B\ (1- %)
Now, it can be shown that, when z is small, ——5 =1+ 2z + 322+ --- ~

(I-2)
1+ 2z. With z = & we get that:
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2 , 3
_ T H2 o o M2
RPpy R R

@

Similarly, the relative perturbation due to 7, when looking at the accelera-
tion of ° relatively to P, is:

Q2:91—91,2 B %71%:&5
g2 (R724‘)2 M2 r2

Again, we use the fact that x < X to simplify the expression.

2.4.4 Radius of influence

Now, we are interested in the point P between P; and P, where both relative
perturbations are of the same magnitude. We thus solve:

S R?
Qe K2 ML
Q1= Q2 B 2

2 2
1 M1 5 _1 J[l 5
er=—<R|—| =2"5R|—
Tl <M2> (M)

e The 275 factor seems to be forgotten often. Since its value is about 0.87,
it is still the right order of magnitude.

2.5 Thrust

2.5.1 Propulsion

A car can push along the road thanks to friction; a plane can generate lift
from air and speed; a balloon can use buoyancy in the atmosphere. However, a
rocket needs to be able to operate in the vacuum of outer space, which implies
no physical object to push against.

Articulating an object into space will not move its center of mass. It means
that a rocket can only gain speed by interacting with the exterior. Thus, the
only way a rocket can accelerate is by throwing parts of its mass out. This is
exactly what their exhaust do: it ejects lots of mass (propellant) down, so that
the rocket will lift up.

? Technically, outer space is not empty: light from the Sun is theoretically
enough for the low-thrust propulsion of solar sails.
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2.5.2 Conserved momentum

We consider a rocket with center /7 of mass m. From ¢ to ¢t 4 dt, it ejects dm
of its propellant (P) with relative (exhaust) velocity v..

Let us notate & the center of mass of the system {72, ’}. Since the system
did not interact with its environment, the speed of G remains unchanged by
the ejection. However, since /7 is moving downwards, it means the rocket have
gained speed.

t t+dt

e (R,m)

(P,dm)
Ve

Figure 2.4: Before time ¢, 17 and P are moving together. Then, /° is ejected down-
wards at speed ve. Since the momentum of the pair {#, P} has not changed, it
means that the rocket has gained some speed upwards.

2.5.3 Exerted force

We are interested in the changes of speed dvg and dvp from ¢ to ¢ + dt. If we
do not take into account external forces, then dvy, = 0. Thus:
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O:d’UG

= dvgm + dvpdm

= dvg(m + dm) + vedm because vp = v — V.

Dividing by dt and with m + dm ~ m, it follows that:

dv, dm
m = —V—

dt dt
We finally get the expression of the thrusting force:

Fy = map = —vem (2.3)

2.5.4 Specific impulse

In KSP, the engines are defined by their maximum thrust /; and their /g,
(“atmosphereCurve” in configuration files). The specific impulse is just the

force exerted per unit (in weight) of fuel used, i.e. Iy, = T’n—’g Thus:
m:ﬁand Ve = —Isp X g

2.5.5 Tsiolkovsky rocket equation

We can now integrate equation (2.3) to get the velocity change of a rocket over

a long period of time:
t
Av = / vrdt
0

)
= —v,—dt
0 m

= [—v, ln(m)](t)
I m(0) (2.4)
=, In .
T om(t)
Conversely, we can compute the amount of propellant Am to eject to bring
a mass . to a given speed:

_Av
Am =m (1 —e v )
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Chapter 3

Orbits

There is a force in the earth which causes the moon to move.

— Johannes Kepler, discoverer of the laws of orbits

Before launching a rocket, we need to know where we are going. Up is only
part of the answer.

3.1 Orbital trajectory
3.1.1 Concept

First, the obligatory quote when explaing how orbiting works:

The knack [of flying] lies in learning how to throw yourself at the ground
and miss.

— Double Adams, author of The Hitchhiker’s Guide to the Galaxy

The part of throwing oneself at the ground is easy:


https://en.wikipedia.org/wiki/Johannes_Kepler
https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion
https://en.wikipedia.org/wiki/Douglas_Adams
https://en.wikipedia.org/wiki/The_Hitchhiker%27s_Guide_to_the_Galaxy

Figure 3.1: Most of the time, stuff we throw into the air falls down.

On the figure above, notice that, as we go right, the ground gets lower and
lower due to the curvature of the planet. Can we go right fast enough so that
the ground will lower as fast as we fall? Well, yes:
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S

Figure 3.2: If we go fast enough, we will keep missing the ground.

3.1.2 Central force

The point 5 is the satellite whose trajectory we want to determine. The celestial
objects it orbits is called the primary. Thanks to the shell theorem, we can
assimilate the primary with a mass-point (7, /7). Using Newton’s Second Law,
the acceleration due to the force of gravitation is:
“w
~~
A GgM

= — 7
r2

Ps

where 7= PS and 7 = L2 is the direction (unit vector) from P to S.

e This already tells us that the acceleration, and hence the trajectory, does
not depend on the mass of the satellite.

.
a7

= % (rf + 7‘99)
= (#—r0%) 7+ (270 +r0) 0

/F

Hence the equation can be written as::

= g2 _ M
i —rf =—3

270 +rf =0
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3.1.3 Kepler’s second law

The second line can be rewritten as:

0=2/0+r6
= (2rif +17)

_ld o
= ;a0

This means that h = r26 is constant.

3.1.4 Variable substitution

Now, the trick is to introduce a new variable u = % and to consider its relation

to #. This means wil will replace r, 7 and # with expressions involving u(6). For
short, we will use the following notation:

du d?u
v =-— and v’ =

de d6?
First, we have:

1
r=—
U

Then, we look at the expression of u’:

y_dl_dtdl 1/ 7N\ _ 7
YSaer T d0dair @ 2) T Th

From this, we get that:

7 = —hu

Similarly, we develop the expression of u’:

because h = 120
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This let us know that:

P = —h2u2u”

3.1.5 Solving the equation

We can now rewrite the equation by using u, v’ and u”:

i—rf? = —7%
—h*utu — %(hu2)2 = —pu?
R — h2ud = —p?
u +u= %

It can be shown that the solutions for this equation are of the form:
u= % — Acos(f — 0o)
for some values of A and 6y. Thus:

1
#5 — Acos(0 — )

T =

Now, if we assume 6y = 0 and set [ = %2 and e = %, then:

l

T ecos(6)

s c¢ is called the eccentricity and [ the semi-latus rectum

3.1.6 Shape

From this expression of r depending on 6, we can vizualize the possibles shapes
for the trajectories of an objects only subjugated to gravitation.

First, we notice that the semi-latus rectum, I, only affects the scale: the
larger [, the larger r, in all directions (all values of 6). It remains to look for
the influence of the eccentricity, e.

First, notice that cos(f) is an even function. It means that cos(—6) = cos(8),
for all values of §. It implies that r(6) is also even: the trajectory is symmetric
along the axis where = 0 (also called the major axis).

Second, notice that —cos(f) = cos(d + 7). This means that reverting the
value of e is the same as doing a 180deg rotation. For this reason, we can
restrict ourselves to non-negative values of e (e > 0).

Now, let us look at different cases:
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If we set e = 0, we get rid of most of the expression and end up with r(6) = .
This means that the distance to the origin does not depend on the direction; in
other words, the trajectory is a circle.

Because of the fraction, we need to avoid its denominator, 1 — e cos(6) to be
zero. Since —1 < cos() < 1, choosing 0 < e < 1 will ensure that 1—e cos(6) # 0.
That way, r(0) is well defined in all directions; it turns out the shape is that of
an ellipse.

On the other hand, if we choose e > 1, we will encouter a discontinuity: since
| cos(#)| ranges from 0 to 1, there will be a values of § where 1 — ecos(f) < 0,
which means an infinite or negative value for r(#). In practice this means that
the object will never be in that direction: this is a hyperbola (or parabola,
in the edge case where e = 0).

Figure 3.3: orbital trajectories arount primary /°: circular orbit in red, elliptic orbit
in green, and hyperbolic orbit in blue

e An object in free fall is always following an orbital trajectory around its
primary. It is actually said to be in orbit when that trajectory does not
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intersect the surface (nor goes to deep into the atmosphere).

When the orbit is closed (circular or elliptical), the oject is said to be
orbiting its primary. When the orbit is open (hyperbolic or parabolic),
the trajectory is said to be:

e a capture orbit (or trajectory) when moving towards the periapsis
e an escape orbit (or trajectory) when moving away from it

3.2 Characterisitics

3.2.1 Apses

We easily find the extremal value of r: the extremal values of cos(theta) are —1
and 1, which means that r varies between
o rper:ﬁandrap:%_ewhene<l

® Ther = 1ie and +oo when e > 1

The point where r = rpe, is called the periapsis (peri- is Greek for close),
while the point where r = r,}, is called the apoapsis (apo- is Greek for far).

?

s While the periapsis is always defined, the apoapsis may not, since an infinite
(or negative) altitude will never be reached.

When we want to be explicit about the object being orbited, we can use
more specific suffixes that -apsis. For instance, the perigee is the periapsis of
an object orbiting the Earth.

Table 3.1: Suffixes for various bodies

Body Suffix

Galactic center -galacticon

Star -astron

Sun -helion

Mercury -hermion

Venus -cytherion

Earth -gee

Moon -lune, -cynthion, -selene
Mars -areion

Jupiter -zene, -jove
Saturn -krone, -saturnium
Uranus -uranion

Neptune -poseidon

Pluto -hadion
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e Various names come from Latin an Greek. For instance, Poseidon is the
Greek god of the ocean, while Neptune is the Roman equivalent. The suffix
-gee is related to Gaia, the Greek goddess of the Earth.

3.2.2 Angles

Astronomers use several ways to measure what are essentially angles.

The true anomaly is simply the angle ¢ we have been using in this chapter;
it is also conventionally named f. In the case of an object in a non-circular orbit,
this angle does not change uniformly. There are two reasons:

1. similar changes in position will result in smaller changes in true anomaly
the further S is from P
2. the object is moving slower when it is far from P

The first issue is solved by measuring the angle from the center O, and
projecting the trajectory on a regular circle. This new angle is named the
eccentric anomaly, since it is measured from (ez in Latin) the center. It is
usually notated F.

Figure 3.4: The orbital trajectory of S (in red) is projected to a circle (in black) and
the angle measured from O is the eccentric anomaly E.

As for the second issue, Kepler’s equation defines a new quantity M, the
mean anomaly:

M = FE — esin(E)

It can be shown that M grows linearly with time. It means that we can
easily predict the mean anomaly of an object at time ¢ as:

M(@t)=M0O)+nxt
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where n is a constant value called the mean motion. By knowing the
mean anomaly at epoch M (0) of an object as well as its mean motion, we
can retrieve its mean anomaly; we can then solve Kepler’s equation to retrieve
FE, and then 0.

3.2.3 Orbital elements

The state of a mass-point is its position and velocity. In space, we need three
values for each the position and the velocity, for a total of six parameters. The
orbital elements are six such parameters that make it easy to also know the
orbit of an object.

First, we have seen that the eccentricity, e, determines the shape of the
orbit. Second, the semi-latus rectum determines the shape, but the periapsis
rper conveys the same information (it is always defined), and is more intuitive.

To tell where the object is on its orbit, we need an angle. The true anomaly
is intuitive, but does not change regularly through time; for this reason, we will
usually prefer the mean anomaly M.

We now need to rotate the orbit in its orbital plane. Since the periapsis is
not necessarily on the x axis, we need an additional angle: the argument of
periapsis w.

Our orbit is now fully determined in two dimension; we just need to orient
the orbital plane in space. For this, we will need to know the inclnation i, as
well as where the inclination occurs.

The axis around which the orbit is inclined is named the line of nodes, and
the two points its intersection with the the orbit are called the ascending node
and the descending node. Their names corresponds to wether the object is
going up (along the z axis) or down, when going through it. The line of nodes
is simply determined by the longitude of ascending node, ().

To sum up, the six orbital elements are:

periapsis, rper

eccentricity e

argument of periapsis w
inclination 17

longitude of ascending node (2

mean anomaly M

3.3 Vis viva equation

The vis viva equation is a simple relation between speed and distance, which
uses only one orbital characteristic.

The principle of energy conservation tells us that the total energy (kinetic
and potential energies) of an isolated system is constant:
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Celestial body

Periapsis

True anomaly

Argument of pgriapsis

(Y)

Longitude of ascending node Reference
direction

0 Inclination

Ascending node

Figure 3.5: Three angles orient the periapsis in space, and a fourth gives the current
position of the object along its orbit. [6]
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1 5 GMm

E=—mv*— is constant (3.1)

2

kinetic potential
Let us consider this at the two most notable points of a closed orbit: periapsis
and apoapsis. At these points, the distance from center r is extremal (and so is
the altitude, or distance from surface); thus, = 0 in both situations. It comes
that:

U:|F|:

77+ r@é‘ =

00| = ré
Since we already know that 26 is a constant value, it comes that:

TaVa = TpUp

Now, we apply the equation of energy (3.1) at both apses and get:

1 9  GMm 1 9  GMm

imva — o = §mvp -
1 1
Va2 — v.2 = 26 M ( — >
Tp Ta
o2 1 1
(1—r’2>va2=2g31 (- )
p Tp Ta
1 1 2
0o =260 < - ) e
Tp Ta T'p® — Ta
_ 2g ‘\[7'(1 - ’p Tp
e 1% — 12
1 Tp
=2GM —
T-a 7-p + ,,.a
_ QAIQG — 1y
e

=GM <2 _ 1)
re Q

We now have an expression of v, that depends only on r, and a. If we use
the equation of energy (3.1) again on the with an arbitrary point with distance
r and speed v:

1 9 GMm 1 5 GMm
— Mg~ — = —mv* —
2 Ta 2 r

v =GM (2 — 2) + 0,2
ST

a

v? =GM <2 — 1) (3.2)

7 a
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From this, we can easily determine the speed of an object from its distance
to the primary.

3.4 State prediction

Finding the position from the orbital parameters if relatively easy. First, we
can find the true anomaly 6 from the mean anomaly M. Then we can retrieve
the distance from the trajectory equation:

l
1 —ecos(f)

For this, we need [, that we can easily find back using the fact that 7, =
With this, we have the polar coordinates (r,0) in the oriented orbital

r

1
1+e”
plane.

Then, it is only a matter of rotating around the proper axes (w around (z),
i around (z) and Q around (z)) to find the coordinates in the general frame of
reference

Finding the velocity is very similar. We simply use the vis viva equation to
determine the speed.

3.5 Inferring an orbit

We consider the inverse problem, where we want to determine the orbital pa-
rameters from our current position i and velocity .

First, let us define the specific relative angular momentum h=7ix7.
Since both /" and ¢ are contained in the orbital plane and h is orthogonal to
both these vectors, it means that h is a normal vector of the orbital plane.
The angle between k and (2) is the inclination i.

If we now compute i = 1, X h, we get a vector that is both in the (zOy)
plane and in the orbital plane: this is the line of nodes. The angle between 71
and (z) is thus the longitude of ascending node, €.

The eccentricity vector is defined as:

L Uxh T
€= -
7

1

It can be shown that its magnitude is the eccentricity and that it points

towards the periapsis. We can thus compute e = |€], set w as the angle between
77 and €, and 6 as the angle between € and 7.

It can be shown that [ = %2 Since we know the semi-latus rectum [ and the

l

eccentricity e, we know the periapsis 1. = 1.
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Chapter 4

Launch to orbit

(44

Can it be that you have come from outer space? 9

— Yuri Gagarin, first human being in space, to people near his landing site

4.1 Vertical ascent

4.1.1 General expression

Assume that 7 is constant. Using (2.4), it comes that:

Av=—v,In (1 - %t) 11

And integrating once more:

e (1= (1 ) ) [ o

= v, <M —t) In <1 - it) + vt + Jp(t)

m m(0)

4.1.2 Gravity
gGMm

If we assume z < R, we can estimate the effect of gravity /' = — Rtz =Y

and J,,, = g%

The approximation is close enough for large bodies such as Earth or even
Kerbin. On smaller bodies, there is no atmosphere and the ascent is not a
problem. To verify this however, we will use (2.4) to get:


https://en.wikipedia.org/wiki/Yuri_Gagarin

m™m GM

T m(0) —mt (R4 2)?

We will then proceed to a numerical approximation:

4.1.3 Graphs

2(0)=0
20)=0
. s G
) = v T T (Rt 20)2
4+ d) = (1) + dez(0)
2(t 4 dt) = 2(t) + dt2(t)

We now compare the graphs for the different approaches (ignoring gravity, con-
stant gravity, or numerical approximation). To get actual values, we simulate a
basic rocket made of the following parts:

e Command Pod Mkl
e FL-T800 Fuel Tank
e [LV-T30 Liquid Fuel Engine

s We could see more clearly the contrast between the different situations by
using a large pod (Mk1-2 Command Pod) instead. However, such a rocket
will not go as high.
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Figure 4.1: We can see that the assumption that z < R is safe enough; moreover,
the effect of gravity on small bodies (c¢) (d) is negligible on such short periods of time.

4.2 Atmospheric drag
4.2.1 Definition
Atmospheric drag exerts a force opposite to the velocity with intensity:

1
Fp = ipUQC’dA

where p is the density of air and Cy and A are aerodynamics factors.

4.2.2 Terminal velocity

When terminal velocity is reached, 2 is constant so Z is null and:

mg

Fp=mgsv=,/2——-m
D g oCy
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4.2.3 Optimal speed

Equation (2.4) shows us that if we want to optimize fuel consumption, we can
simply reason on Awv.

1 A 1 1
Av = (Fp +mg)At = [ =pv?CyA 4+ myg 2F —pCqAv+ mg — | Az
2 v 2 ~—~ U
7-4 Cn
1

2

Now we define f(v) = Cyv + % and find its minimum. Its derivative is

f'(v) = C1 — 3. It comes that the minimum is v = (C—i It matches the
terminal velocity.

4.2.4 Derivation of air pressure

Assume the atmosphere is in a stable state and consider an infenitesimal volume
dV. The force exerted on it are the gravity and the pressure surrounding it.
By symmetry, the effects of horizontal pressure cancels out; we note dP the
difference in pressure below and above dV.

jp
P P
_r P

Figure 4.2: The pressure below dV must be stronger to fight gravity. dP will be a
negative value, so that we can keep the vertical axis orientation up

The resultant force of pressure on dV is dAdP where d A is the bottom area
of dV. We have dV = dAdz. To fight gravity, we must have dAdP = —gdm =
—gpdV. We can divide by dV on both hands of the equations to get:

P
==
The value g can assumed to be a constant but p depends on P. According
to the ideal gas law:

—Pg
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M PM

where V is the considered volume, n the number of molecules of gas in it, R
a convenient constant, 7' the temperature and )/ the mean mass of a molecule
of the gas. From this, we can deduce the following differential equation:

P gM
dz ~ RT
To solve it, we need to find a primitive. We will assume that the gravitation
is constant and that the temprature decrease linearly with altitude (rate L).

2 gM gM (* 1 gM . gM Lz
== =2 mr - = -2 m(1- 2
CRT TR ), 7o T e M Ao=—Tgh T
Thus:
—_gM
/1 L
P(z) = Pyetr "(0-F) = p, (1 - %)

4.2.5 Evolution of terminal velocity

Using the closed expression for the pressure, we can now derive the density and
then the terminal velocity depending on the altitude:

1,200 1
1,000
1,000 |
1800
800 f —
o ~
g 1600 &
F 600 -
a | et
100 | 400 ®
200 | 1200
0 ‘
0 1 2 3 4

b [m] -10*

Figure 4.3: The terminal velocity quickly rises after 30 km
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4.3 Gravity turn

4.3.1 Principle

Once the spacecraft has left the atmosphere, it is not subject to air drag anymore
and can set its orbit. For this, it simply need to raise its orbit from the center of
the body to above the atmosphere. It is more convenient for further maneuvers
to have a circular orbit.

Figure 4.4: When P leaves the atmosphere and burns in /3, it can change from the
red “orbit” to the blue orbit.

4.3.2 Classical burn

Using the vis-viva equation (3.2), we can compute the requisite speed for orbit-
ing:

UQZQM<3_ 2 )ZQM
Ta

Ta Ta+Ta

For example, on Kerbin, you need to reach an horizontal velocity of:

. \/6.67 x 101 m3/kg/s? x 5.29 x 102 kg
orbit =

=2
600 km + 80 km 9 m/s

?

e Tosave Av, launches are done close to the equator to go with the movement
of the surface due to the body’s rotation. On Kerbin, we save (T is the
orbital period):

2t R
Usurf = —— = 174.5 m/s
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Chapter 5

Maneuvers

The six words you never say at NASA: “And besides — it works in Kerbal
Space Program.”

— xked, cartoonist and NASA roboticist
In this chapter, we will see how to change from a circular orbit to another.

5.1 Pro-/retro- grade burn

The vis-viva equation (3.2) tells us:

v =GM (2 — 2 >
r r(l + r])

For example, if we are at an apsis (apo- or peri-) and want to rise the opposite
point, we need to speed up (burn prograde), and slow down to decrease it; the
formula above tells us how much so.



https://xkcd.com/1244/

Figure 5.1: A satellite on the blue orbit can switch to the red one by burning
prograde (speeding up) at B; conversely it can switch from the red orbit to the blue
one by burning retro grade at this same point.

When searching for good trajectories, we are interested in saving propellant.
According to (2.4), this is the same as saving for Av (althgouh proportionally).
If r is the apsis where the burn is performed, r; the opposite apsis before the
burn and r; after:

Av = |v1 — v

1 A \/2 2 \/2 2
——Av = - — — /- —
VGM r r+ry r T4+ 1

5.2 Hohmann transfer

Now, assume we are in a circular orbit of radius ry and want to do a simple
transfer to a circular orbit of radius r;. During a Hohmann transfer, we first
raise our apoapsis to 1 and then the periapsis (from the new apopsis).
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Figure 5.2: We first switch from the blue orbit to the one by burning at

and then from the one to the red one by burning at
1 ’ /2 2 1 ’ 1 /2 2 ‘
——Av=4/—— — — — |+ |—=—/— —
VGM ro  ro+ri 4/To VT Lo To+ T
We can multiply both hands by /7 and set x = :—('} to get a simpler expres-
sion:

1 2 2
N3 x 14z

To 2
L Av=|y/2- —2——1
\V gar = ‘ 1+a ’+
——

o7



Figure 5.3: Note that decreasing an orbit by half costs about as much as the converse
(doubling it), but dividing it by four costs twice as much as the converse.

5.3 Bi-elliptical transfer

The idea is to use three burns instead of two.

Figure 5.4: During a bi-elliptical transfer, we use two intermediate orbits ( ,
then violet); the idea is that it will be easier to raise the periapsis from a higher
apoapsis

o8 CHAPTER 5. MANEUVERS



1 2 2 1
BRI :’ /2 2 1
gM ro ro+n To
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e T2+ L Tot T
2
re T2 AT
Again, we set © = i—(’) and y = % and:

0 2

0 Av=|yf2- 21

gM 1+y
——

\/2 2 \/2 2
+ R — —_
y x4y y 14y
1 2 2
+ _ —_
NZ x xTHty
—— Hohmann

0.6 | |—Bi (y = 10)
— Bi (y = 50)

0.58 +

0.56 +

alv

0.54 1

0.52 |

0.5 1

0.48

.

5.4 Inclination change

e Remember, we are only considering circular orbits. The formulas and
derivations below only make sense for circular orbits. We advise you to set
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your inclination in a circular orbit before any subsequent maneuver.

5.4.1 (Anti-)normal burn

Consider the orbital plane in which a satellite is moving. We are interested in
the effect of an acceleration orthogonal to the plane (normal or antinormal).
For this, we study the evolution of the velocity.

e
v+ dv
o
do
%
dv

Figure 5.5: The satellite is heading towards ¥ and an acceleration is applied to it so
that during a time dt, its velocity is changed by dv.

As seen in figure (5.5), we can easily find the change in inclination:

df ~ tandf = @

v
/ do / adt
—dt =
dt v
at  Av

h="=="

[ (

5.4.2 Straight burn

Doing a 180° inclination chage using a constant radial burn like exposed above
yields a Av proportional to the current orbital velocity v: Av = 7v ~ 3wv.
However, simply going retrograde until the speed is reverse only yields Av = 2v
for the same result.
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You can find another derivation of the cost in [9] [10].

,-q
j~d
O\I/

Figure 5.6: A rotation of angle 0 from velocity vector vy to vi is done in a straight
change in speed Awv.

We need to compute Av for given v = |v| = |v1] and 0. Because the triangle
is isosceles, the altitude and the median from P are one so:

Av =

0
2vsin — ‘
2
For 0 = 7w, we get Av = 2v which is the expected result.

2 ~

1.5 1

0.5 |

—180—135 —90 —45 0 45 90 135 180

0(°)

Figure 5.7: An inclination change of about 30° already costs half the orbital speed;
60° costs as much as the orbital speed.
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5.4.3 Bi-elliptical inclination change

Whatever the method used for the inclination change, the cost is proportional
to the current orbital speed. Thus, it is more efficient to do such a maneuver at
low speed (e.g. at apoapsis). /u/ObsessedWithKSP demonstrated a maneuver
similar to the bi-elliptical transfer for a more efficient plane change [7] [8].

A formal derivation of the optimal inclination change has been published by
/u/listens_to__galaxies [9] [10].

N

Figure 5.8: Starting in the blue plane on the circular orbit, the spacecraft first burns
prograde in to raise its apoapsis to ; once there, its speed is lower and it can
proceed to the inclination change to the red plane effectively; finaly, it burns retrograde
back in to return to a circular orbit.

5.5 Radial in/out burn
TODO

5.6 Arbitrary burn

TODO
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Chapter 6

Operating

(44

Let’s face it, space is a risky business. I always considered every launch a
barely controlled explosion. 99

— Aaron Cohen, Deputy Administrator of NASA

6.1 Gravity assist

Consider a spacecraft I’ and a celestial body O. When getting close to O, the
gravity will get important enough to significantly change the trajectory of the
spacecraft. The goal is to get it to turn without using any fuel and while keeping
the same velocity (in a different direction).

X
0

Figure 6.1: The speed of the mobile will increase as it heads towards the periapsis
X, trading its gravitational potential for kinetic energy; it will then decrease when
moving away from X. Overall, the total energy will be conserved and it will move as
fast when leaving O as when getting there.

Now, this velocity change is done relatively to O.


https://en.wikipedia.org/wiki/Aaron_Cohen_(Deputy_NASA_administrator)

Figure 6.2: If we note vp the velocity of P relatively to O and vo the velocity of O
around its primary, the velocity of P around O’s primary is vp before encountering O
and vp+vo after (note that the red trajectory moves with O along the blue trajectory).

Auy: 89

Mepiune

Figure 6.3: Voyager 2 flew by Jupiter, Saturn, Uranus and Neptune, but the swingby
of Neptune actually slowed down the vessel as it turned slightly out of the trajectory
(out of the plane in the image). [17]

6.2 Rendez-vous

The goal of rendez-vous is to make the position and velocity of a spacecraft /71
roughly matching those of P2. Once the spacecrafts have performed a rendez-
vous, they can do useful action such as docking or crew transfer.
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Figure 6.4: The Cassini-Huygens spacecraft left the Earth for the green solar orbit
(1997); it then flew twice by Venus to increase its orbit to the red one (1998) and then
to the blue one (1999). The blue trajectory was further improved by gravity assists
by the Earth (1999) and by Jupiter (2000). [18]

?

s After rendez-vous, two vessels would be moving along a very similar orbit.
On short durations (compared to the orbital periods), the pull of gravity
can simply be ignored like if the vessels were subject to no force at all
(making docking simple).

Same position and same velocity means a similar orbit. Once both satellites
are revolving around the same body, the first correction is that of inclination:
one will perform an inclination change (either (anti-)normal burn, straight burn,
or bi-elliptical). When they are orbiting in the same plane, they will have to
consort their orbits, and synchronize on the final orbit.

A simple way to do this is to have the orbits joining in one point (say, the
periapsis) while their period is significantly different. After a few revolutions,
the two spacecraft will get in the common point at the same time and will be
able to join their orbit. It is handy to correct the orbits before the last revolution
to get a more accurate rendez-vous.
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P2

Figure 6.5: P2 will reach X ahead of P1; however, the red orbit has a higher apoapsis
and thus a longer period: after some time, /”1 will catch up with /72

6.3 Satellite coverage

Assume we want to set up a satellite network around a body O. The coverage
is done with satellites in circular orbits. It is handy to have several satellites
around the same orbit; to cover a band on the surface at all time. The fist thing
to ensure is that the satellites stays connected.

6.3.1 Connectivity

We are interested in two values: the closest approach of the lines-of-sight to
O, notated h, that must be greater than the radius of the body R and the
distance between the satellites, notated s that must be lower than the range of
the satellites antennas 7.
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Figure 6.6: There are 5 satellites on the red orbit around O. The surface is shown
in blue and the lines-of-sight of the satellites in green.

What we have to choose is the number of satellites n and their distance from
O, r. With, a = 27” and simple trigonometry, we get that:

« T
h =1rcos— = rcos—
2 n

and

e .o
s = 2rsin — = 2rsin —
2 n

Thus, with the requirement that 2~ > R and s > r,, we need:

Ta

<r<
™ ST
cos 2SIIln

Conversely, if we want to know the the necessary value of n for a given
altitude r, we have to ensure that:

n > Randn>

Z R i T
arccos - arcsin bro

?

e Functions arccos and arcsin are only defined from —1 to 1 meaning that we
need that » > R; this makes sense. Moreover, when 2r < r,, the second
conditions should be ignored, since it means the whole orbit stays in range.

Similar information is available on the KSP wiki [12].
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6.3.2 Coverage

The curvature of Kerbin makes that a satellite sees less than half the surface;
the closer it is the surface, the less it can see.

Figure 6.7: X1 and X2 are the farthest point that /” can see from this distance; the
line (PX1) is said to be tangent to the circle, and there is a right angle in X1

e This property is used on the surface: the crow’s nest is an observation spot
located high in the masts of a ship to see significantly farther away. The

distance you can see from altitude a is R arccos Ri;a.

We quickly see that sina = cos§ = }7—?.

6.4 Light exposition

star

Figure 6.8: The light rays are shown in orange. When P is in the blue part of the
orbit, it does not receive light from the primary star.
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e If O is a moon orbiting around a planet, both the night time around the
moon and around the planet must be computed. In the worst case (when
the night of one ends, the night of the other starts), they can add up and
make a longer night than expected.

6.5 Flight duration
TODO
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My goal is simple. It is a complete understanding of the universe, why it
is as it is and why it exists at all. 99

— Stephen Hawking



	Introduction
	About this document
	Kerbal Space Program
	Credits

	Basics
	Units
	Functions
	Derivatives
	Integrals
	Differential equations

	Mechanics
	Referential
	Newtonian mechanics
	Shell theorem
	Sphere of influence
	Thrust

	Orbits
	Orbital trajectory
	Characterisitics
	Vis viva equation
	State prediction
	Inferring an orbit

	Launch to orbit
	Vertical ascent
	Atmospheric drag
	Gravity turn

	Maneuvers
	Pro-/retro- grade burn
	Hohmann transfer
	Bi-elliptical transfer
	Inclination change
	Radial in/out burn
	Arbitrary burn

	Operating
	Gravity assist
	Rendez-vous
	Satellite coverage
	Light exposition
	Flight duration


